hide

The world is becoming increasingly interconnected, and the role of optical fiber cables in powering the future of communication cannot be overstated. These hair-thin, glass-based transmission lines have revolutionized the way we transmit data. 

Our world-class products and solutions are connecting the world effortlessly enabling remote collaboration and endless possibilities. Our application-based and customized cable solutions cater to high-bandwidth applications of data centers, global internet companies, ISPs and telcos, and citizen network services making the most of AI, 5G and heavy data transmission applications. STL offers a wide range of cables and supports network builders in more than 100 countries across the globe. Our Optical Cable Portfolio includes Aerial, Underground, Micro duct, Ribbon, Indoor Outdoor, Last Mile connectivity, and special application cables. 

25+ Year legacy in Fiber
Optics

Since 1995, STL has been connecting the world with the best optical fiber cable solutions. From the first optical fiber plant in India, STL has state-of-the-art production sites across Asia, Europe, North America, and South America. 

As one of the industry’s leading fiber optic manufacturers with a 25+ year innovation track record and customer base in more than 100 countries, STL’s fiber optic solutions are preferred by network engineering and operations teams around the world.

Experience the excitement of a future where connectivity knows no limits, all made possible by the reliable and high-performance optical fiber cables we manufacture.

Other Related Products



optical-fibre-banner
Optical Fibre

Fibre optics refers to the technology and the medium associated with the transmission of data as light pulses along a ultrapure strand of glass, which is a thin as a human hair.

Optical Connectivity

Due to increasing data demands, there's a dire need to create new fibre deep networks and data centres, which would encourage faster 5G and FTTH adoption.

Speciality Cable

The world is getting smarter and connected. Converged and high bandwidth application networks have unique challenges which make high performance connectivity a top priority.

FAQs

An optical fiber network uses infrared light pulses to transport information over optical fiber from one location to another. The carrier wave that makes up light is modified to transmit information. Broadband connections that use fiber-optic technology can provide lag-free rates of up to 940 megabits per second (Mbps). Fiber-optic internet is also known as "fibre" internet or simply "fiber." The system makes use of fiber-optic cable, which astonishingly has a data transmission rate of up to 70% of the speed of light. Additionally, fiber-optic cables are less vulnerable to extreme weather than other older cable types, reducing disruptions. Additionally, it successfully withstands electrical interference.

Based on the mode of propagation of light, optical fiber cables have two different types.

a. Multimode Optical Fiber Cable: At wavelengths of 850 nm or 1300 nm, multimode fiber (MMF) enables the simultaneous transmission of several data streams.

b. Singlemode Optical Fiber Cable: Singlemode fiber (SMF) has a single light route that can traverse great distances and has a significantly smaller core size.

Based on materials, optical fiber cables are divided into two types.

a. Plastic Optical Fiber Cable: The main substance for light transmission is poly(methyl methacrylate).

b. Glass Optical Fiber Cable: It is made out of a mass of glass fibers. Light travels through each individual glass fiber from the light source to the fiber's opposite end.

Lastly, based on the refractive index, optical fiber cable is divided into two different types.

a. Step-Index optical fiber cable: Step-index fibers feature a symmetrical core with one index of refraction and a lesser index of refraction on the uniform cladding. The simplest type of optical fiber has a cylindrical silica glass core that is encircled by cladding with a lower refractive index than the core.

b. Graded-Index optical fiber cable: As the radial distance from the fiber axis rises, the optical fiber's refractive index falls. Graded-index fibers are often utilized in the telecom industry by grading the index of refraction of the core such that it gradually tapers between both the core center and the cladding. It lowers multimode dispersion.

a. Based on construction, Multimode permits many concurrent light modes, whereas single-mode fiber is meant to transport a single light mode. The bandwidth, signal stability, and signal transmission distance are all impacted by this disparity.

b. Based on bandwidth, Single mode cables may accommodate more powerful, brighter light sources with less attenuation. Comparatively, Multimode relies on the transmission of several light modes with increased attenuation and lower brightness.

c. Based on transmission distance, With a typical single-mode connection, single-mode fiber can transport data across short and long distances of up to 10 km (6.2 miles). On the other hand, the maximum transmission distance for multimode ranges from 300 to 550 meters.

The fastest and most dependable internet service right now is fiber optic. Users may access more media types and larger file sizes more quickly because of the fiber's quicker download and upload rates. Tech experts now choose it over the 5G network because it is quicker and more dependable. A fiber network can easily meet all of your internet demands, thanks to speeds up to 100 times faster than standard broadband. The bandwidth of fiber optics is 1 GB/s. That's 10-20 times faster than the 50-100 Mbps cable that most of us are familiar with today.

The technique that sends information as light pulses via a glass or plastic fiber is known as fiber optics, often called optical fiber. These glass fibers can range in quantity from a few to several hundred in a fiber optic cable. The glass fiber core is encircled by a second glass layer known as cladding. A few to hundreds of optical fibers may be found inside the plastic sheath of a fiber-optic cable. They transmit data signals in the form of light and travel hundreds of miles more quickly than those used in conventional electrical cables. Optic cables and optical fiber cables are other names for them.

Find out
what's trending right now