STĽ

Budgeting your link losses, still?

Innovations for enhanced network performance

Dr. Jitendra Balakrishnan

CTO-Connectivity Solutions Sterlite Technologies Ltd.

Tech ecosystem disrupting with new use cases

Exponential Growth in data

Increasing data demand pushing for new network creation

2x increase in global data demand Fixed line

internet to be the major contributor

New networks would be different

Converged, fibre dense and deep fiberized

Source: Cisco VNI forecast

Sample view of such a city wide network

New networks – Perform better, provisioned faster and cost less

STU

Deep dive into each one of these

Optical solutions solving for these challenges

Networks are susceptible to optical losses Macro Bend Loss

Increasing geographical spread

More no. of tight bends & turns

Legacy fibre (G.652.D) loss increasing

At higher wavelengths and tighter bends

Macro-bend loss prevalent in passive ancillaries Long distance route

STĽ

1.06dB avg. macro bend loss

per macro-bend point with legacy G.652.D fibre @ 1625nm

Location	Total fibre tested	Length (Km) No. of		Total M-bend loss (dB)		Average M-bend loss (dB)	
			IVI-Dellu	1550 nm	1625 nm	1550 nm	1625 nm
Link 1	2	37.6	4	1.22	3.78	0.31	0.95
Link 2	1	45.2	2	0.43	0.8	0.22	0.40
Link 3	2	54.7	3	1.45	2.25	0.48	0.75
Link 4	2	59.4	3	2.97	5.94	0.99	1.98
Overall average / macro-bend points					0.51	1.06	

Macro-bend prevalent in passive ancillaries

Access networks

6 out of 16 routes tested positive for losses

Significant (>0.5 dB) macro bend losses found in JBs, Tapping Boxes etc.

© 2019-2020 Sterlite Technologies Limited

9

Several factors across network span lead to macro bend losses

Schematic of a 10Km FTTH network

STU

One accidental bend \rightarrow Data transmission interrupted with legacy fibre

A Bend insensitive fibre solves the challenge

Deep dive into each one of these

Optical solutions meeting all these demands

Limited PON reach of 11 kms

G.652.D

Restricted technology migration with G.652.D fibre Incremental capex required

~50% reduction in PON reach to 7 Kms.

Power budget increased to 32dB in case NG-PON scenario

Bend insensitive fibre enhances PON reach...in today's scenario

G.657.A2

Cushion utilisation in terms of higher splitting - "Faster to Market"

STU

Enables easier tech migration for future readiness

No incremental capex required

~5dB cushion even after 11 kms.

Reduced operational expense with Bend insensitive fibre

10+ years increased network life*

Lower loss increases repair resilience enhancing overall network life

Assumptions:

- Accidental 15mm bend at time of repair
- Average link length : 14kms, 1000 links per sim and 51 sims in total
- Splice loss: 0.1 dB (G.652.D vs G.657.A2)
- Cuts/1000km/month: 5 and 10
- BOL drum attenuation: 0.20/0.21/0.22/0.23 dB/km

High fibre density designs possible with BIF fibre

Cost effective brownfield capacity augmentation

12-13% improved Micro-bending performance allows for tighter cable design without compromising on attenuation/km

Maximum	Micro-duct size	Maximum Feasible Fiber Count			
Packing density		G.652.D Fiber	Bend Insensitive Fiber*		
	16mm/13mm 192		192 432		
80%	12mm/10mm	144	144 192		
	10mm/8mm	72	72 144		
* 200 um Fiber					

Deep dive into each one of these

STC

Optical solutions meeting all these demands

Faster provisioning enables greater market share and early asset monetization

Cables based on legacy fiber - Not suitable for faster network densification

Time Taken(in Minutes)

So, while BIF enables all these...

New network provisioning or capacity augmentation

The challenge that still remains MFD mismatch

G.652.D with 9.1 +/- 0.4μ MFD @ 1310 nm

G.657.A2 with 8.6 +/- 0.4μ MFD @ 1310 nm

MFD mismatch makes fiber splicing inconvenient

OTDR reading mismatch \rightarrow Apparent bad splice

Time wasted in replacing by installer

On-field test results

wide variability in splice loss readings taken from Unidirectional OTDR

Unidirectional OTDR Reading @1550 (in dB)				
Sample No.	D to A2	A2 to D		
1	0.172	0		
2	0.21	-0.154		
3	0.236	-0.124		
4	0.157	0		
5	0.359	-0.114		
6	0.24	0		
7	0.343	-0.141		
8	0.206	-0.115		
9	0.122	0		
10	0.235	-0.138		
Moderate deviation fro	om	Significant deviation from acceptable reading		

Installers aren't ever sure of splice quality

Loss from bad splice gets hidden in the apparent loss in uni-directional OTDR

STC

OTDR reading mismatch \rightarrow Apparent bad splice

Time wasted in resplicing by installer

Confusion over splice and fibre quality

A thin line observed at each splice point on splicing device's screen

STC

One Product, multiple applications Bringing the best of both worlds

We've achieved the right balance

Best-in-class attenuation and bend insensitivity

Attribute	OH-LITE NOVA (Enhanced A1 + D)	BOW-LITE (E) (A2 Fibre)		
Typical Attenuation V	alues (in dB/km)			
@ 1310nm	0.33	0.34		
@ 1550nm	0.19	0.20		
@ 1625nm	0.21	0.22		
@ 1383nm +/- 3nm	0.31	0.34		
MFD @ 1310nm	9.1 +/- 0.4μ	8.6 +/- 0.4µ		
Typical Macro Bend Loss Values (in dB)				
1 turn 10mm radius, 1550nm	≤0.5	≤0.1		
1 turn 10mm radius, 1625nm	≤1.5	≤0.2		

Upto 10x reduced bend losses than OH-LITE NOVA

STU

Innovation Engines We drive innovation through

Connectivity Solutions Network Services

Network Software

Innovator

Distinguished Capabilities

- backed by our unique capabilities in
 - Advanced Photonics
 - Materials Science
 - Precision Manufacturing

- Algorithmic Design
- Ultra Fast Deployment
- Automation & Robotics

- Al Analytics
- Programmable Networks
- Web scale DevOps

STL in numbers

STU

Customers

- Partnering with 8 of 10 Top Telcos
- Working with Top 2 Cloud Co.
- Operating in more than 100 countries

People

- 3.1k+ Associates
- 30+ Nationalities
- Great Place to Work
 Certified

Innovation

- 4 Innovation Centres
- 90% -Y-o-Y patent filing growth in FY19
- 103% 5-year CAGR for optical fibre cable patent portfolio growth

Global Footprint

- 7 Global Production Facilities
- 50 million fkm Fibre Capacity

Financials

- \$1.5 billion Order Book
- \$737 million in revenue
- 43% revenue from exports

Environment & Society

- 100% Recyclable Packaging Material
- STL Garv Rural-connectivity platform
- STL Academy 1.5k certified youth
- Zero Waste to Landfill

STL@IMC Data Networks Innovator Partr

Data Networks Innovator Partner

STĽ

Would love to engage with you further #STLWebinar

https://www.linkedin.com/company/sterlite-technologies-ltd-/

https://twitter.com/SterliteTech

© 2019-2020 Sterlite Technologies Limited

