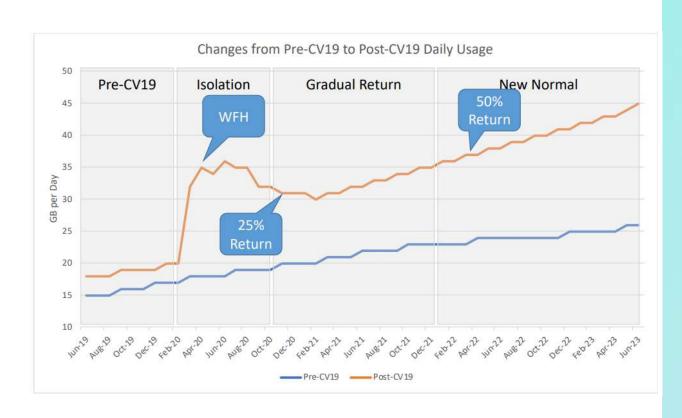

Webinar

Bend Insensitive FibersImprove Network Installation, Performance and Maintenance

13th July 2020

Speaker

Dr. Seldon Benjamin


Principal Solutions Architect- Optical Interconnect

Sterlite Technologies Ltd.

seldon.benjamin@stl.tech

Covid-19 Lockdown Accelerated Use-case Adoption; Long-term Growth Trend On Data Consumption Already Emerging

Trends from European operators on COVID lockdown

New networks would be different

Converged, fiber dense and deep fiberized

Denser Networks

Access layer end points will multiply

Deep Fiberization

Fiber intensive network to support latency and capacity requirements

ITU Standards Focus On Bend Optimization But Maintaining Backward Compatibility Is An Industry Imperative

Same MFD for true	
backward compatibility	

ITU Standards

Bend optimized fibers

STL Fiber	Attn. 1310nm (dB/km)	Attn. 1550nm (dB/km)	MFD Mean (μm)		STL Fiber	Attn. 1310nm (dB/km)	Attn. 1550nm (dB/km)	MFD Mean (μm)
				G.657.B3	BOW-LITE SUPER	0.35	0.21	8.6
?	?	?	?	G.657.A2	BOW-LITE (E)	0.35	0.21	8.6
OH-LITE NOVA	0.33	0.19	9.1	G.657.A1(+)	BOW-LITE PLUS	0.33	0.20	8.8
BOW-LITE-250	0.34	0.20	9.1	G.657.A1	BOW-LITE 200	0.34	0.20	8.8
OH-LITE (E)	0.33	0.19	9.1					
OH-LITE	0.34	0.20	9.1	G.652.D				

New Networks – Perform Better, Provisioned Faster And Cost Less

1

Enhanced network performance

Optical products ensuring optimized power budget throughout network lifetime

2

Reduced network ownership cost

Optical products ensuring lesser network capital and operational expense 3

Faster network provisioning

Solutions enabling faster network deployment and thus, faster customer onboarding

Deep Dive Into Each One Of These Optical Solutions Solving For These Challenges

1

Enhanced network performance

Optical products ensuring optimized power budget throughout network lifetime

2

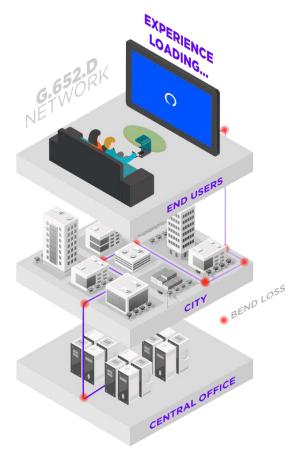
Reduced network ownership cost

Optical products ensuring lesser network capital and operational expense

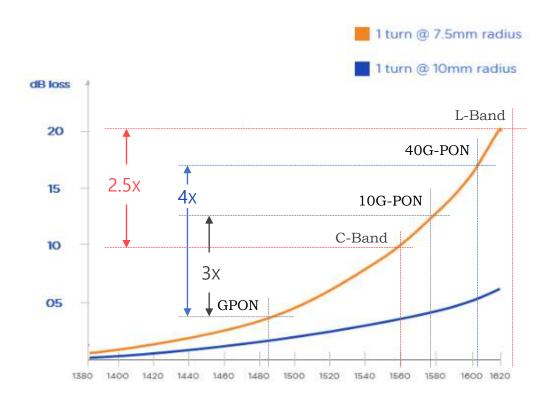
3

Faster network provisioning

Solutions enabling faster network deployment and thus, faster customer on-boarding


Networks Are Susceptible To Optical Losses

Macro Bend Loss


Increasing Geographical Spread

More no. of tight bends & turns

Legacy Fiber (G.652.D) Loss Increasing

At higher wavelengths and tighter bends

Macro-bend Loss Prevalent In Passive Ancillaries

Long Distance Route

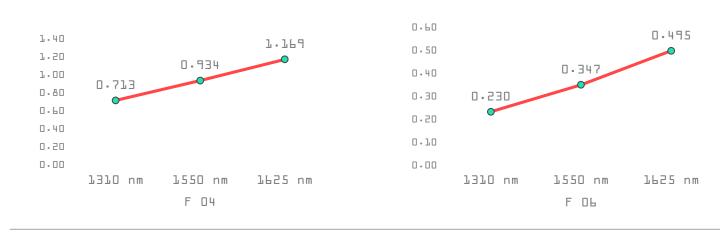
1.06dB avg. Macro Bend Loss

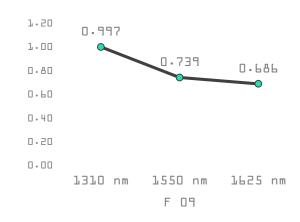
per macro-bend point with legacy G.652.D fiber @ 1625nm

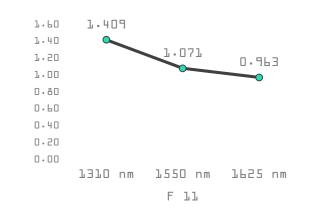
Location	No. of M-bend		rotal d loss (dB)	Average M-bend loss (dB)		
		1550 nm	1625 nm	1550 nm	1625 nm	
Link 1	4	1.22	3.78	0.31	0.95	
Link 2	2	0.43	0.8	0.22	0.40	
Link 3	3	1.45	2.25	0.48	0.75	
Link 4	3	2.97	5.94	0.99	1.98	
	0.51	1.06				

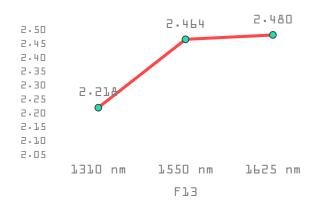
Source: Route survey of a leading Indian Telco

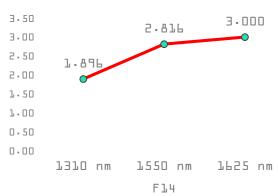
Macro-bend Prevalent In Passive Ancillaries


Access Networks




9


6 Out Of 16 Routes Tested Positive For Losses


Significant (>0.5 dB) macro bend losses found in JBs, Tapping Boxes etc.

Several Factors Across Network Span Lead To Macro Bend Losses

Feeder Network

» Connector Loss

» Accidental Bends

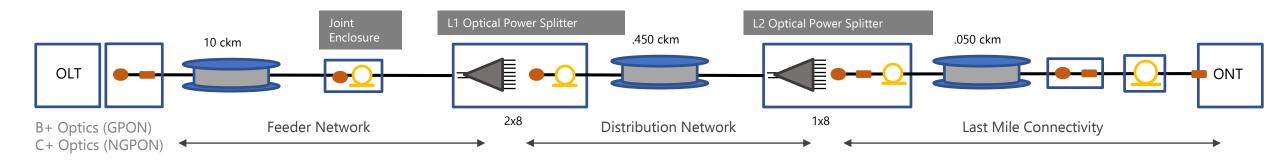
- » Joint Splicing
- » Fiber Attenuation
- » Fiber Cuts

Distribution Network

- Splitter loss
- Connector loss
- Splice loss

» Accidental

Bend


Inside Building HTB connector loss

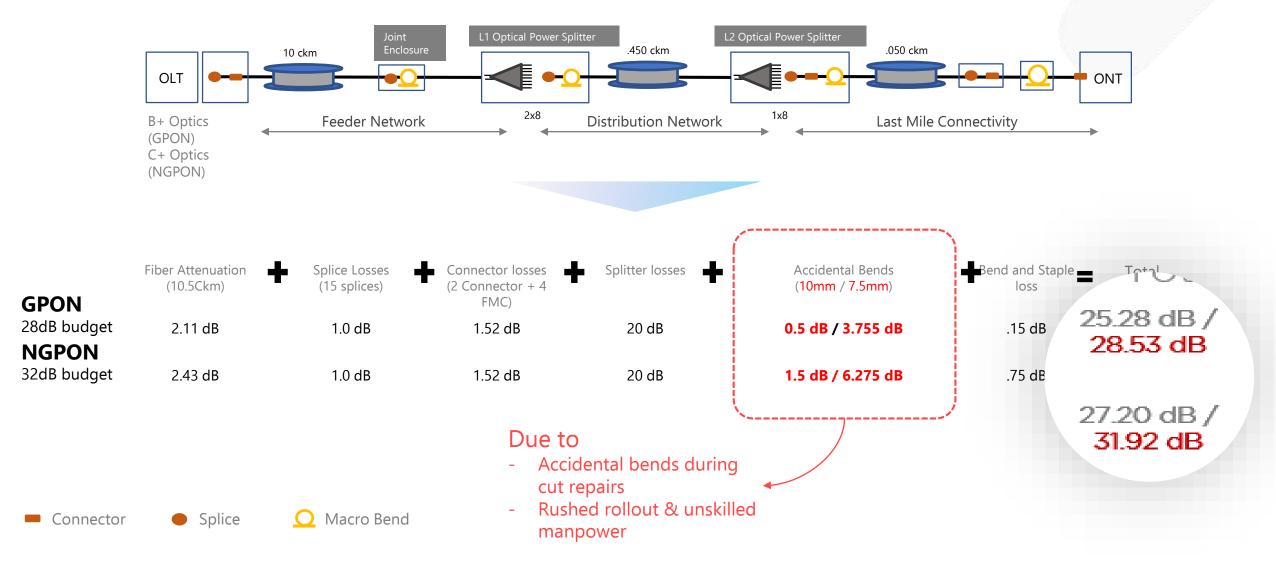
- Bend loss
- Staple loss

» Accidental Bend during

Last Mile

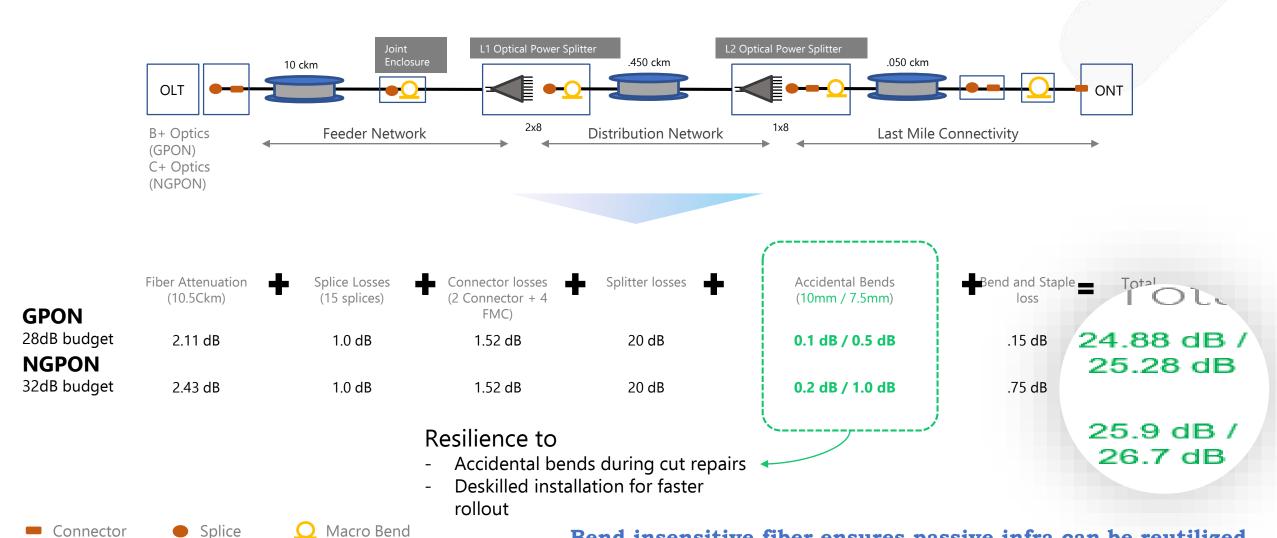
O&M

Schematic of a 10Km FTTH network


Connector

Splice

Macro Bend


One Accidental Bend → Data Transmission Interrupted With Legacy Fiber

A Bend Insensitive Fiber Solves The Challenge

Bend insensitive fiber ensures passive infra can be reutilized when upgrading GPON to XGS-PON/NG-PON/NG-PON2

Deep Dive Into Each One Of These

Optical Solutions Solving For These Challenges

1

Enhanced network performance

Optical products ensuring optimized power budget throughout network lifetime

2

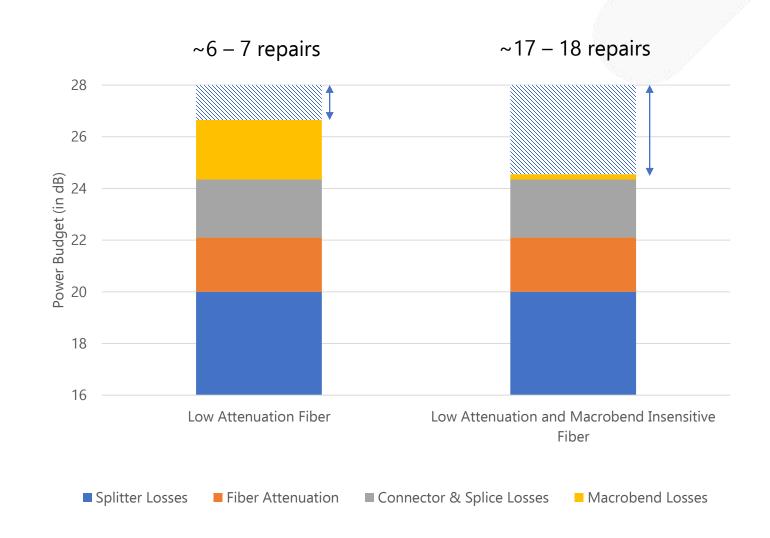
Reduced network ownership cost

Optical products ensuring lesser network capital and operational expense 3

Faster network provisioning

Solutions enabling faster network deployment and thus, faster customer on-boarding

Reduced Operational Expense With Bend Insensitive Fiber



increased network life*

Lower loss increases repair resilience enhancing overall network life

Assumptions:

- Accidental 15mm bend at time of repair
- Average link length: 14kms, 1000 links per sim and 51 sims in total
- Splice loss: 0.1 dB (G.652.D vs G.657.A2)
- Cuts/1000km/month: 10
- BOL drum attenuation: 0.20/0.21/0.22/0.23 dB/km

Deep Dive Into Each One Of These

Optical Solutions Solving For These Challenges

1

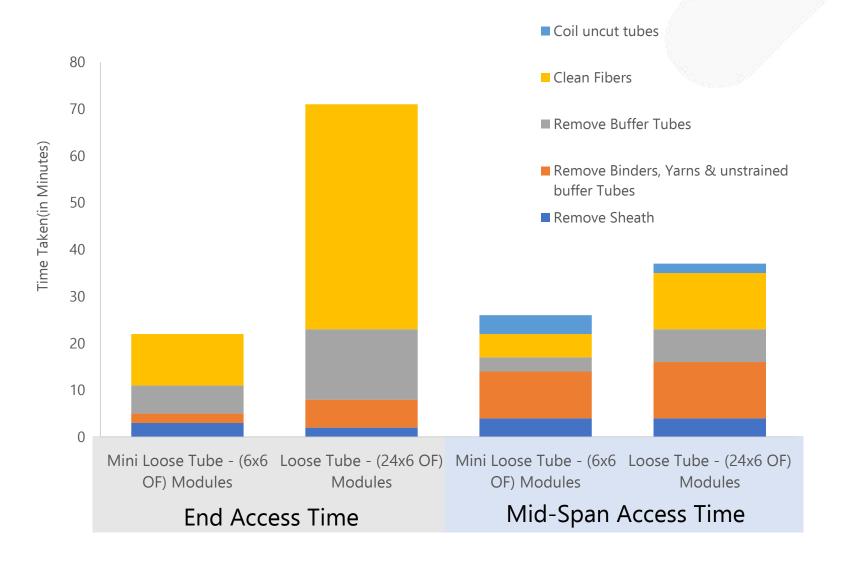
Enhanced network performance

Optical products ensuring optimized power budget throughout network lifetime

2

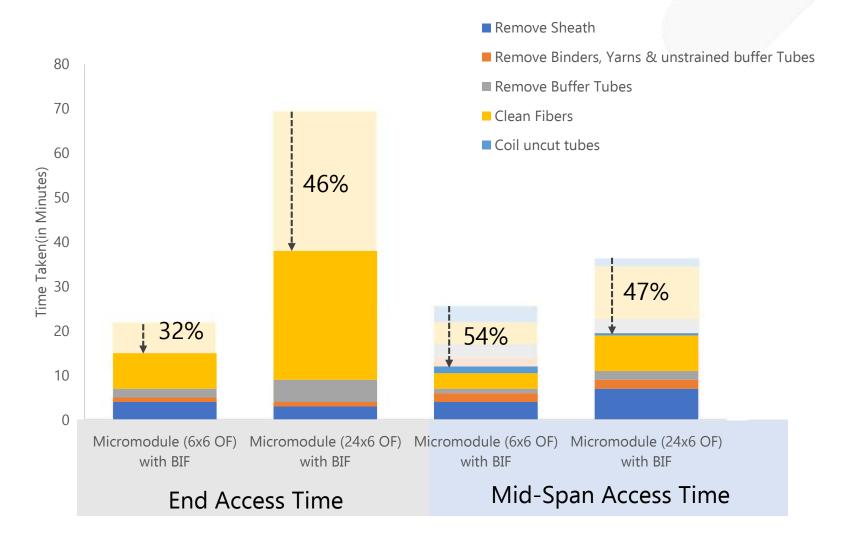
Reduced network ownership cost

Optical products ensuring lesser network capital and operational expense 3


Faster network provisioning

Solutions enabling faster network deployment and thus, faster customer on-boarding

Cables Based On Legacy Fiber - Not Suitable For Faster Network Densification


joint splicing
process of
≥144 fiber
count cables can take an
entire day!

Bend Insensitive Fiber Enables Faster Network Provisioning

40% reduction in installation time
Micro module designs made using bend insensitive fiber

So, While BIF Enables All These...

New Network Provisioning Or Capacity Augmentation

1

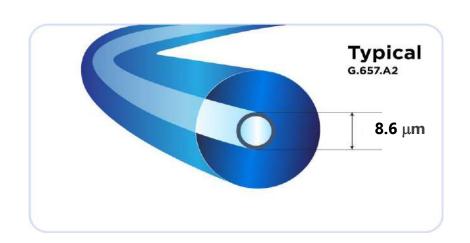
Enhanced network performance

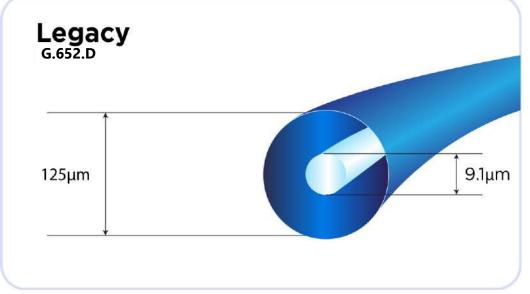
Optical products ensuring optimized power budget throughout network lifetime

2

Reduced network ownership cost

Optical products ensuring lesser network capital and operational expense 3

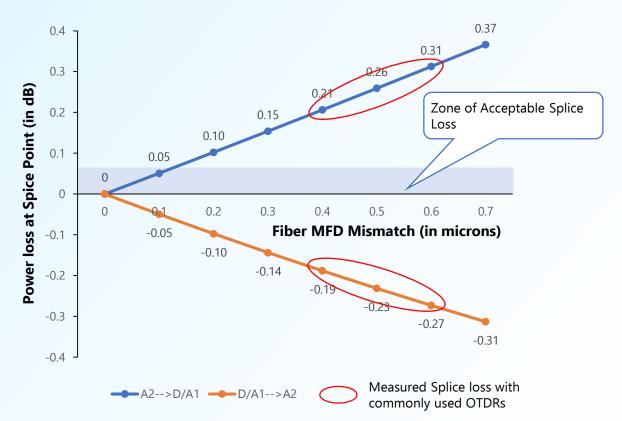

Faster network provisioning


Solutions enabling faster network deployment and thus, faster customer on-boarding

The Challenge That Still Remains MFD Mismatch

G.657.A2 with 8.6 +/- 0.4μ MFD @ 1310 nm

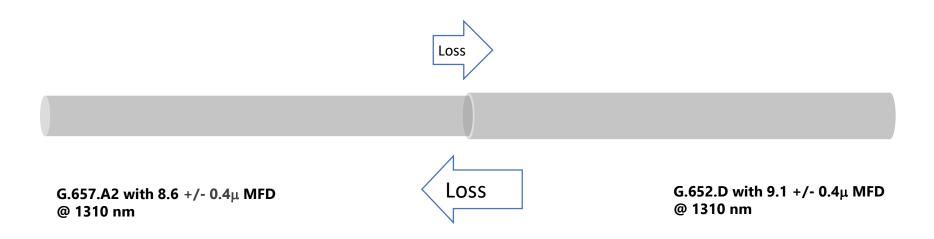
G.652.D with 9.1 +/- 0.4μ MFD @ 1310 nm


MFD Mismatch Makes Link Qualification Confusing

- Low loss fusion splice between A2 and D fibers is easily achieved using appropriate splicing recipe
- However, measuring that splice loss in order to qualify a link is not straightforward
 - Preferred OTDR single ended method does not work
 - Optical power loss measurement works but requires matched/calibrated Laser Source and Power Meter pairs and technician at each end of the network

OTDR reading mismatch → Apparent bad splice

Time wasted in replacing by installer



MFD Mismatch At A Connector Interface

Don't do it, but if you have to.....

- Results in real loss at connector interface that will actually vary depending on which direction you
 measure it
- Add OTDR gainer/looser errors on top of that
- Good luck extracting any useful loss measurement

One Product, Multiple Applications Bringing The Best Of Both Worlds

We've Achieved The Right Balance

Best-in-class Attenuation And Bend Insensitivity

Upto 10x Reduced Bend Losses Than OH-LITE NOVA

1 turn 7.5 mm mandral radius @1550 nm wavelength

Same MFD For True Backward Compatibility

ITU Standards

Bend Optimized Fibers

STL Fiber	Attn. 1310nm (dB/km)	Attn. 1550nm (dB/km)	MFD Mean (μm)		STL Fiber	Attn. 1310nm (dB/km)	Attn. 1550nm (dB/km)	MFD Mean (μm)
				G.657.B3	BOW-LITE SUPER	0.35	0.21	8.6
STELLAR	0.33	0.19	9.1	G.657.A2	BOW-LITE (E)	0.35	0.21	8.6
OH-LITE NOVA	0.33	0.19	9.1	G.657.A1(+)	BOW-LITE PLUS	0.33	0.20	8.8
BOW-LITE-250	0.34	0.20	9.1	G.657.A1	BOW-LITE 200	0.34	0.20	8.8
OH-LITE (E)	0.33	0.19	9.1	G.652.D				
OH-LITE	0.34	0.20	9.1					

Core Business

We Integrate Digital Networks For Our Customers

Customer Segments

Telcos

Cloud Companies

Citizen Networks

Enterprises

End-to-End Solutions

Fiber Deployment

FTTx Access
Network

Network Modernisation

Portfolio Offerings

Unique Capabilities

Optical Interconnect Products

- Glass Preform
- Optical Interconnect
- Optical and Speciality Cables
- Optical Fiber

Virtualised Access Products

• Programmable FTTx

RAN Intelligent Controller

Virtualised Radio

RAN Orchestration

- Network Software Products
- Telecom Billing Operations Software
- Monetisation and Engagement Software

System Integration Services

- Network Design Services
- Fiber Rollout Services
- Network O&M Services
- Data Centre Integration
- Private Enterprise Integration

STL In Numbers

\$736 Mn.

FY20 REVENUE

India (66%), Europe (22%), China (3%), Rest of world (9%)

7

GLOBAL PRODUCTION FACILITIES 50m fkm optical fiber capacity

4

INNOVATION CENTRES

Research & Development

358

PATENTS

Across the network layer

Zero

WASTE TO LANDFILL

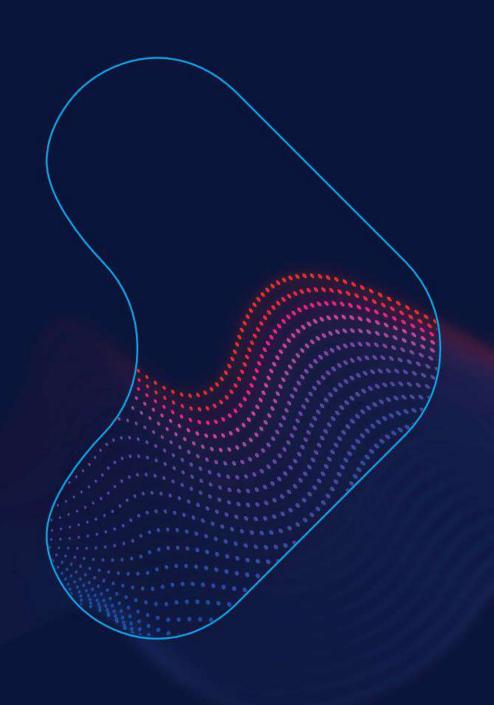
Shendra, Rakholi, Dadra

30+

NATIONALITIES

~3,100 Employees

Let us know your thoughts


#STLWebinar

